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I. General

This final report covers work carried out by the principal
investigator and a graduate research assistant at the Department of
Mathematics during the 13 months period from July 1, 1979 to
July 31, 1980 under Contract F49620-79-C-0186.

The progress has resulted in three technical papers listed in
Section II, which will be submitted for publication as soon as
completed.

During the report period, the following people contributed to

the project: Professor James T. Lo and Mr. Sze-Kui Ng.

II. Publications

(1) Transition Probabilities of Homogeneous Markov Processes on
Compact Lie Groups, to appear.

(2) Projecting Homogeneous Markov Processes onto Compact Homogeneous
Spaces, to appear.

(3) Approximation of Brownian Motion Densities on the Three Dimensional

Rotation Group, to appear.

III. Summary of Progress

An optimal estimation scheme for continuous-time rotational
processes with one degree of freedom was obtained in [1]. The estima-
tion problem for continuous—-time rotational processes with three degrees
of freedom turns out to be rather difficult. Many attempts were made
by the P.I. in the past few years on the problem. While these attempts
produced minimal results, many crucial issues have been placed in
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perspective, Because of the theoretical and practical importance

of the problem, a concentrated effort was finally made during the

report period to study these issues.

(1) Transition Probabilities of Homogeneous Markov Processes on

Compact Lie Groups:
A signal process on S0(3) (the 3-dimensional rotation group) can

be constructed by injecting a 3-dimensional Brownian motion into _ﬁ°°°5510n;2;éf
RTIS GRA

S0(3) [2]). It is known that such a signal process is governed by DTIC T8

Unlanmioinced

a bilinear stochastic differential equation. But how do we computel Justi. .cation,

— e ————

the transition demsity for this process? In the S0(2) case, such | g,
ctton density b 1iet lled the folded | Distrituticen/ |
a transition density has an explicit expression called the folde | Avellatility

Av:i. un
Dict ibeela
!

1 normal density. It is also called a theta function. Then what is

a general folded normal density or theta function? This question

\ e

is answered in a much more general context as follows:

-
Let {Té")} be a sequence of finite dimensional irreducible unitary

representations of a k-dimensional compact Lie group G where Tél) =1,

The infinitesimal operators Afn) of Tén) is defined as

(n) ;[ CYI ] .
A i.:tg T 'rgi(t) 1l 1=1,..., k

}
‘ where {81} are k one-parameter subgroups of which the tangent vectors
" at the group identity e are orthogonal. There is a neighborhood of e

in which a parameterization xl(g),..., xk(g) satisfies
k
(n) _ (n)]
Tz exp[izlxi(g)Ai . Vg€G.

These local coordinates {xi(g)} can be extended continuously to the




3.

entire G such that they do not vanish simultaneously except at e.

Let X1 denote the left invariant vector fields corresponding to gy-
Hung [3] proved that for a smooth function f and the transition
probability P(t, g, E) of a homogeneous Markov process, the function'

u(t, g) = J f(o)P(t, g, d0) satisfies the Kolmogrov backward equation,

G
with P(0, e, E) concentrates at e. v
du(t, g) E k
= a, X X u(t, g) + Z a X u(t, g)
3t 1,520 1813 N o A
k
I [ll(t, gh) - u(t’ g) - z xi(h)xiu(t’ g)ldF(h)o
G\{e} i=1
for a real vector [al,..., ak], a non-negative definite matrix
[a ]k _ ., and a positive measure F on G\{e} such that
ij'1,3=1
k 2
J ) x{ (g)dF (g) < =
G\{e}i=1

Our result is that the transition probability P(t, g, E) can be
calculated by using the following fact:
(n), (n) (n)
Let C (t)=me t{ a,, A’ ’A + 2 a,A
n P i§=11j S T P O |
k

[T;“) -1 -] xi(g)Af“)]dF(s)}

|
c\{e} i=1

and GO (dim. of Tén))/(the volume of G).

Under certain conditions, there exists a sequence of functions

N(r)
£ (t, g, 0) = néo pnA: :z[ré“)*rén)c:(t)]

such that for hEC(G),
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4.

Lim Ih(c)f (t, g, 0)do = Ih(c)P(c, g, do)
o r

vhere[A"| <1, Ay = 1, &im A" = 1, n = 0,1,... and &in N(r) = =,
r>® o

For example, let us consider G = S0(3) and the Brownian motion

governed by the bilinear Ito equation,

-dt —dw3 dw2
dX(t) = | dw, -dt ~dw; (X(t), X(0) = I
—dw2 dwl ~dt

where [wl, LY w3] is the standard Brownian motion in R3. The

transition density p(t, g, 0) of the process satisfies

p
3t (t, g, 0)

-1 2 lnp oy + -+ 332~(t 0)
“sin B 3B (PTERT B sinZB (2 B 7

2 2
- ap_ 3p
2 cos Baaay(t’ g’ o) + aaz(t’ 8! o)]

p(O’ e, o) = 6(0)
] t L}
where g = (0@ , B, Y ) and 0 = (&, B, Y). It can be explicitly written

as

p(t’ g, o) = Z 2_‘_\__"'_2_1_ e-j (j_l)t % eim'-l;j (cos B')einY'e_m
3-0 8w m,n--j mn

°Pin(cos B)e-inY

vhere e Pin(cos B)e-mY is the generalized spherical functions of

order jJ.
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(2) Projecting Homogeneous Markov Processes onto Compact Homogeneous

Spaces:

The 2-sphere Sz, the surface of a ball, is a natural state space
for the directional processes. It is isomorphic to the quotient
space S0(3)/S0(2). A signal process on 82 can be induced by projecting
a signal process on S0(3) onto 82. If the signal process on S0(3)
is Brownian, then what is the transition density of the induced
Brownian motion on Sz? This question is also answered in a general
context as follows:

Let H be a closed subgroup of the Lie group G. Corresponding to
a projection Il:g + Hg from G onto the homogeneous space H\G, there
exists a C°° mapping s such that ]I s = 1. For each s, an element
g€G is expressed uniquely as sl(x)h for some x€H\G and h€H. A homo-
geneous process on H\G can be induced by projecting throughlla homo-
geneous process ;n G.

The transition probability P(t, x, B) of the resulting process
on H\G can be calculated by using the following fact:

Under certain conditions, there exists a sequence of functions

(@)* [ . (n) (n)
fr(t’ X, y) = § Py A tr [Ts(x)l dgTs(y)Cn(t)]

such that for h€C(H\G),

£1im h(y)fr(t, x, y)du(y) = I h(y)P(t, x, dy)
ro® H\G
where § is an invariant measure on H\G and the other symbols are

defined as in (1).




For example, the transition density of the homogeneous process

that is the projection of the example in (1) satisfies

—g%(t, X, y) = —_sii 3 -agg[sin B%E‘(t, x, y)]

2
_._}_._ Q_B(t’ x, y)

sin28 ayz

p(0, 0, y) = 6(y)

+

where x = (o', B') and y = (a, B), the spherical coordinates. It

can be explicitly written as

pat k n
p(e, %, 9) = b Bt O] g -vemG -, ®
= n=-k

where YE(% -Y, B, -k<n < k are the unnormalized spherical

functions of the k-th order.

(3) Approximation of Brownian Motion Densities on the Three Dimensional
Rotation Group:

The transition densities obtained above are very complicated

functions, as illustrated by the explicit expressions for the transi-~
tion densities of the simplest possible Brownian motions on S0(3) and
sz. In order to use them for estimation, a natural question is whether
they can be approximated closely by s;mpler closed-form functions.

Let us restrict our attention to the density obtained in the

example in (1):

-

pO(a' By, Y) = P(t’ e, (a, B, Y))

L
225; 1 0% + 1) ) oimla + Y)P:m(°°s B).

2=0 m=-L




It can be approximated closely by

ok cos B+ k cos (o + Y)

; 1
, Pk(u, 8’ 'Y) = zﬂ-co(k' )C lz'_'k)

2m
C()(k) - I ek cosctda

0

: Tr
c, () = J ek o8 B 4p

0

~20

where k is determined by coth k - -11('- =e Let the Fourier series

expansion of Py be
v 20 +1 (2) *
: pk(a, By Y) = J = tr[T )Cl(k)]
‘ 2=0 8w g
where Cz(k) = [C:m(k)] is a 22 + 1 dimensional coefficient matrix.
It is proven that

i (a) For each m, 2 such that - <m < &,

cﬁm(k) =D 0[§]
! Cg'(k)=0 forn#m
! mn ’

(b) Given any € > 0 and positive integer N, there exists a number

«

——— L —— i T - .

K(e, N) such that, for

k>K(, M), 2 <N, and 2 <m<?,

- -
3 Y e .

[

e-oz(m + 1)

C:'m(k) - < e

PR

- It is noted that (a) is analogous to those for spheres and circles

obtained in [4] and [5]. (b) is new and stronger than (a). (b) for

-

spheres and circles is also obtained in our work.
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